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SEM Images using Wavelets 

Wei Sun, Jose A. Romagnoli, Joseph W. Tringe, Member, IEEE, Sonia E. Létant, Pieter Stroeve and 
Ahmet Palazoglu  

  
Abstract—Edge characterization has become increasingly 

important in nanotechnology due to the growing demand for 
precise nanoscale structure fabrication and assembly. Edge 
detection is often performed by thresholding the spatial 
information of a top-down image obtained by Scanning Electron 
Microscopy (SEM) or other surface characterization techniques. 
Results are highly dependent on an arbitrary threshold value, 
which makes it difficult to reveal the nature of the real surface 
and to compare results among images. In this paper, we present 
an alternative edge boundary detection technique based on the 
wavelet framework. Our results indicate that the method 
facilitates nano-scale edge detection and characterization, by 
providing a systematic threshold determination step. 
 

Index Terms—Line Edge Roughness (LER), SEM, wavelets.  
 

I. INTRODUCTION 
ine edge characterization is a bridge connecting the 
performance of a device with the fabrication process.  It 

provides a practical metric that can improve single device 
performance and reduce device-to-device variability [1], [2].  
Yamaguchi et al. [2], for example, recently described a new 
process for defining line edge roughness (LER) appropriately 
for next-generation transistors, and for defining a target 
roughness value for meeting device performance targets.   The 
determination of LER in a structure, however, requires a first 
critical measurement step to recognize these edges in an 
image:  identifying the location of the boundaries, for example 
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in units of pixels or nanometers.  Historically, the recognition 
of line edges has been a subjective, variable process.   Here, 
we introduce a new process which employs the wavelet 
transform to create a deterministic, image-based definition of 
this critical quantity. 

There are several line edge characterization methods 
described in the literature [4] but the first step in this effort is 
always ‘edge identification’ that uses images taken from the 
real surface, which usually are top-down SEM or Atomic 
Force Microscopy (AFM) images. As expected, edge 
roughness characterization is highly dependent on the imaging 
method and also on the edge boundary detected. Since all 
imaging methods carry various degrees of noise that masks the 
real surface features and patterns, it becomes crucial for a 
characterization method to uncover the surface structure and 
to allow detection of the real edge boundary.  

In practice, it is difficult to unequivocally differentiate the 
signal contributions that originate from the imaging process 
from the ones that correspond to the real surface in the spatial 
domain. A recent computational technique, the wavelet 
decomposition [5], makes it possible to observe a given signal 
(image) at different resolutions or frequencies that correspond 
to different topographical features, such as underlying peaks 
and valleys, or detailed variations on a surface. This facilitates 
the detection and isolation of random surface features and 
noise from the relevant ones and can form the basis of 
subsequent quantitative analysis steps.  We have shown 
previously that wavelet decomposition can help in extracting 
specific image features from AFM images and allow them to 
be studied in detail [6]. Wavelet decomposition was 
previously used in SEM image processing [7], [8] in the 
context of fault detection in the etching process. More 
recently, wavelets have been used for the estimation of the 
electron probe profile from SEM images [9]. 

In this paper, a wavelet-based method for edge detection in 
SEM images is proposed and its performance is compared 
with an existing method. With the new method, image 
enhancement is performed by intensity normalization and then 
the image is de-noised first, similar to existing practice. This 
step is followed, however, by wavelet decomposition to 
specify edge and background levels so that LER 
characterization can be rigorously performed. We show that 
the wavelet-based edge detection strategy can yield an image-
dependent edge boundary to facilitate edge roughness 
characterization. This provides a systematic evaluation of the 
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superimposed edge search region and the associated threshold 
value, which are only properties of the image itself. 

II. EDGE DETECTION AND CHARACTERIZATION 

A. Edge Detection 
Edge detection means obtaining the boundaries for a given 

edge in terms of pixels or nanometer location in an image. 
Edge characterization is subsequently based on the boundaries 
found by this edge detection step. The most commonly used 
approaches for edge detection are signal-threshold and 
derivative-threshold methods based on a de-noised image [4].  
Following image transformation to pixels, de-noising and 
differentiation, the user needs to make two decisions: (i) how 
to specify the image region for line edge search, and (ii) how 
to choose the threshold for boundary detection. The first 
decision defines the search range in the image, and is often 
based on a visual observation, which can include all possible 
regions to avoid losing any critical information for the edge 
detection step. The second decision is also made visually 
based on the height or intensity information from an image, 
which makes line edge roughness characterization depend on 
the choice of the threshold value. Between these two 
decisions, one also performs normalization in terms of the 
intensity value, which is expected to enhance the contrast of 
the whole image, but will not change the edge boundaries in 
terms of number of pixels or nanometer location. In this paper, 
we focus our discussion on the decision that involves the 
selection  of the search region and the threshold to show how 
such a selection influences edge detection of the resist line and 
we offer an analytical method to determine it. 

B. Edge Characterization 
In edge characterization, LER denotes the deviation from a 

reference straight line or from a reference flat surface 
depending on if one works in one or two dimensions [1], [2]. 
Thus, LER can capture two aspects of roughness according to 
the dimension considered. For surfaces, roughness is based on 
the height information within the edge, and requires that the 
image is taken in terms of height. For lines, the edge boundary 
roughness is based on the boundary location either in terms of 
number of pixels or nanometer measurement. In this paper, we 
focus on the latter, since an SEM image is used and edge 
boundary deviation is more important in this case. 
Nevertheless, all characterization techniques rely on the edge 
boundary defined in the edge detection step, hence the 
conclusions drawn should be valid generally. 

There are several ways to characterize the LER. The sigma 
value is chosen in this paper, since it is the most 
straightforward and most closely related to the line boundary. 
It is defined as: 

p

N
i i

N

p∑ == 1
2δ

σ         (1) 

where Np is the number of points along the line edge, and δ is 
the signed distance of each edge point from the linear fit to the 

line edge [4], [10]. Spatial correlation is also considered as a 
characterization method in the literature [11], [12].   

 

 
 
Fig.1. Flowchart of wavelet-based edge detection strategy. 
 
Based on the edge boundary information, correlation between 
two boundaries for each single edge and maximum intensity 
lines for a pair of edges are also calculated. This can help 
quantify the presence (or lack thereof) of synchronization 
between two boundaries, which could reflect photoresist 
variations due to, for example, swelling [13], or could reflect 
charging effects in the SEM during imaging. Edge width 
variation along the edge distance can also capture the 
uniformity of an edge [10]. The width information at different 
threshold values is also discussed in this paper. 

III. WAVELET-BASED EDGE DETECTION 
Wavelet decomposition is widely used in time series and 

image analysis [5], [14]. Its salient advantage over other 
analysis methods, especially Fourier transform, is that it can 
give not only frequency information of a signal, but can also 
localize that information in the temporal (spatial) domain.  
The details of the wavelet decomposition are given in the 
Appendix. 

The wavelet-based edge detection strategy is depicted in 
Figure 1. When an original image is decomposed into the nth 
level using wavelets, one smoothed (approximation) sub-
image and 3n detail sub-images are obtained. The smoothed 
sub-image reveals the underlying structure of the surface by 
eliminating imaging noise and the high-frequency details of 
the surface.  By searching the smoothed image, background 
and edge regions can be defined without the interference of 
high-frequency components.  This step corresponds to the first 
decision associated with ‘the specification of the image region 
for line edge search’ in the conventional edge detection and 
characterization method, and avoids any input from visual 
observation. High-frequency sub-images represent the surface 
deviation of both peaks and valleys, which can be used to 
define the background intensity and further to determine the 
intensity level or height value where the edge boundary is 
located.  

 



IEEE TSM 7000 
 

3

 
(a) 

 
(b) 

 
Fig.2. SEM image from photoresist process, (a) original 
image, (b) after intensity normalization, rotation and selection 
of 512×512 image. 
 

The threshold value will influence the edge boundary 
detection and, in turn, the edge characterization. A suitable 
threshold value for edge boundary detection is required to 
separate adjacent edges and retain edge roughness information 
at the same time. The approximation sub-image describes the 
underlying surface and yields an average intensity (height 
level) along the edge separating line. Furthermore, the detail 
sub-images contain all high-frequency components which 
represent the deviation of intensity (or height). By combining 
both the approximation average and the standard deviation of 
surface details, an image-dependent threshold value can be 
obtained.  

IV. RESULTS AND DISCUSSION 

A. SEM Image used for Edge Detection and 
Characterization 
An SEM image (Fig. 2a) is used as an example to compare 

two methods of line edge detection and roughness 
characterization. The SEM image analyzed is a of a 1740 
line/mm plane diffraction grating holographically produced on 
a 50 mm diameter fused silica substrate.  The grating lines are 
in photoresist, nominally 550 nm tall and 150 nm wide, with 
nominally vertical sidewalls. High-frequency components may 
be caused by the photoresist itself or exposure variations, or 
may be related to the charging process associated with SEM 

imaging. In this paper, our focus is to characterize the 
uniformity of the edge and its deviation from the ideal straight 
line. Characterizing edge uniformity in this consistent manner 
will help identify sources of variations, whether physically 
associated with the structure under study, or else related to the 
imaging process. 

The image data are in tiff format and imported into 
MATLAB® to yield an N×M array for further processing. To 
increase the contrast of the image, image enhancement was 
performed by intensity normalization [4].  To avoid artifacts 
associated with features aligned to the SEM electron beam 
scanning direction, the scanning direction was not chosen to 
be parallel to the photoresist lines. To simplify the 
calculations, however, the image was first rotated to position 
the image edge horizontally with respect to the photoresist 
lines, and for subsequent analyses, a 512×512 image was 
selected (Fig. 2b).   

B. Edge Detection by Thresholding and LER 
Characterization 
According to the procedure proposed in [4], the image is 

first de-noised and normalized in terms of intensity or height. 
To demonstrate the effectiveness of the edge detection step 
within the pre-defined edge-search region, we compare edge 
search results from several threshold values. In this section, 
the edge-search region is specified visually.  Figure 3 shows, 
for three values of the chosen intensity threshold, how the 
edge characterization results can vary. Each plot includes the 
upper and lower edge boundaries and the maximum intensity 
line as well as the edge width along the edge distance.   Figure 
3a shows that two adjacent edges are not totally separated 
when the threshold value is 0.2, since there are several parts of 
the inner boundary (which corresponds to the upper boundary 
in Fig. 3a) are straight. The LER based on this boundary 
cannot reveal the edge characteristics, because no surface 
roughness exists under that threshold value. As the threshold 
value increases, edges appear to be well separated and 
defined, as roughness is revealed along the upper boundary 
range, but it is also observed that the edge boundaries are 
smoothed due to the de-noising operation on the intensity 
direction. This represents the key trade-off in this approach. 

A sigma value is calculated from Eq. 1, based on the linear 
fitting of two boundaries of an edge, revealing the edge 
roughness at a certain threshold value of intensity. The 
correlation coefficient between the edge boundaries for each 
case is also calculated, and can range from -1 to 1.  Here, -1 
and +1 indicate negative (inverse) and positive (proportional) 
relationships between the two data sets, respectively, and 0 
means that they are independent.  Here, we chose to use the 
absolute value of the correlation coefficient, as we are chiefly 
interested in the magnitude of correlation, not necessarily its 
direction.  In practice, the correlation coefficient is expected 
to be small for undamaged photoresist features [10].   
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(a) 

 
(b) 

 
(c) 

Fig. 3. The plots show the upper (dash) and lower (dot) edge 
boundaries and the maximum intensity line (solid) as well as 
the edge width along the edge distance in nm. Edge 
boundaries are found by thresholding based on de-noised 
image, for threshold value of (a) 0.2, (b) 0.6, and (c) 0.8. With 
increasing threshold value, edges appear well separated and 
defined.  The edge boundaries also appear smoother due to the 
de-noising operation in the intensity direction. 
 
The results of sigma and correlation coefficient calculations 
are shown in Table I.  It is noted that the sigma value relative 
to the linear fitting of edge boundaries decreases at small 
threshold values, but starts to increase again when the edge 
width significantly shrinks and the calculation of the sigma 
value starts to reflect surface variations. The desirable 
threshold value (0.6) is highlighted in Table I.  The absolute      

 
TABLE I 

CHARACTERIZATION RESULTS FOR EDGE BOUNDARIES FOUND 
BY THRESHOLDING ON DENOISED IMAGE 

Threshold 
Value 

Edge width 
(nm) 

Sigma  
(nm) 

Absolute value of   
correlation coefficient 

between upper and 
lower boundaries  

0.2 145.6 ± 8.5 7.8 N/A 

0.5 119.6 ± 
10.2 11.1 0.1246 

0.6 96.0 ± 12.5 12.8 0.1162 
0.7 74.2 ± 7.8 8.1 0.1134 
0.8 51.0± 7.9 8.7 0.1779 
0.9 23.4±21.3 17.0 0.6059 

 
TABLE II 

CHARACTERIZATION RESULTS FOR EDGE BOUNDARIES FOUND 
BY THRESHOLDING ON ORIGINAL IMAGE 

Threshold 
Value 

Edge width 
(nm) 

Sigma 
 (nm) 

Absolute value of  
correlation 
coefficient 

between upper and 
lower boundaries 

0.2 145.9 ± 7.4 7.6 0.0413 
0.5 125.1±13.2 12.9 0.0056 
0.6 111.6 ± 13.7 13.9 0.0628 
0.7 88.7 ± 14.1 14.7 0.1343
0.8 59.1 ± 10.8 11.7 0.1806 
0.9 29.5 ± 15.1 14.1 0.1301 

 
correlation coefficient between the two boundaries is 
generally small, indicating that they are independent from 
each other as expected.  We also note that this coefficient 
becomes significantly high when the threshold value is 0.9, a 
strong indication that the edges become highly correlated 
between two smoothed parallel boundary lines due to over-
smoothing. 

Table II shows that the edge width and the sigma values are 
much higher than the ones corresponding to the de-noised 
image, indicating the increased uncertainty for this case. This 
uncertainty stems from the artifacts due to the imaging process 
and also includes the high-frequency components of the edge 
itself.  It is noted that the edge search region is determined 
visually here.  It is difficult to see if it covers the whole edge 
region or it already includes a region associated with the other 
edge. 

In addition to the characterization of a single edge, behavior 
of a pair of adjacent edges can also be studied. This analysis 
will show the degree of parallelism and the correlation 
between the edges in more detail, and can be used as a basis 
for quantifying the performance of the fabrication process. 
Here, we use the slope of the line obtained by a linear fitting 
of the maximum intensity profile and compare the slope 
values for each edge. Pair edge boundaries are determined for 
the threshold value of 0.6.  In Table III, we indicate the slopes 
of the maximum intensity linear fit for each edge, and the 
correlation coefficient of the maximum intensity between two  
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(a) 

 

 
(b) 

 
Fig. 4. Edge boundaries and width at automatically generated 
threshold values. (a) At threshold value of intensity mean + σ 
(0.6290), (b) at threshold value of intensity mean + 2σ 
(0.7617). 
 
edges. The slope values show that two linear fits based on the 
maximum intensity of each edge are almost parallel and they 
are independent of each other, and this indicates a successful 
patterning of the lines. 
 

C. Edge Detection by Wavelet Decomposition and LER 
Characterization 
Wavelet decomposition can efficiently separate an image 

into an approximation image (smoothed sub-image) and a 
detail image (sub-image with high-frequency details). The 
low- frequency part mainly contains the edge features and the 
background, and the high-frequency part typically results from 
the surface roughness and imaging artifacts. As wavelet 
decomposition is performed at each level, the high-frequency 
components in the image are sequentially removed. The 
remaining approximation part of the image becomes smoother 
as the decomposition progresses. The suitable approximation 
we are looking for shall eliminate the random features, but 
retain the edge and the background features.  To facilitate this 
decision, we need a performance metric (i.e., an objective 
function). One possible metric is the Shannon entropy which 

calculated for the approximation image at each decomposition 
level. Shannon 

 
 

TABLE III 
CHARACTERIZATION RESULTS FOR PAIR EDGES 

 Slope 1 Slope 2 Absolute value 
of correlation 

coefficient 
De-noised image 0.0000 0.0000 0.0439 
Original image 0.0008 0.0029 0.0800 
Wavelet based  0.0008 0.0029 0.0800 

 
TABLE IV 

SHANNON ENTROPY FOR WAVELET APPROXIMATION SUB-
IMAGE AT EACH LEVEL 

Decomposition 
level 

1st 2nd 3rd 4th 5th

Shannon entropy 
(1.0×104) 

7.263 7.286 7.226 7.739 8.295 

 
TABLE V 

CHARACTERIZATION RESULTS FOR EDGE BOUNDARIES FOUND 
BY WAVELET DECOMPOSITION 

Threshold 
Value 

Edge width 
(nm) 

Sigma  
 (nm) 

Absolute value of  
correlation 

coefficient between 
upper and lower 

boundaries 
0.496(µ) 130.9 ± 12.4 12.2 0.0239 

0.629(µ+σ) 111.6 ± 13.7 13.9 0.0628 
0.762(µ+2σ) 76.5 ± 12.8 13.3 0.1071 
0.894(µ+3σ) 34.1 ± 12.4 12.7 0.0344 

 
is a measure of the efficiency of a given expansion over all 
basis functions [15]. It yields the distance between a basis and 
a function and enables the search for a smallest entropy spatial 
decomposition of a signal (image).  In other words, it 
establishes a cost function for the information content of a 
signal (image) at different levels of decomposition using 
special basis functions. Its minimum is therefore sought for 
locating the optimal wavelet decomposition.  For the image 
under consideration here, the minimum value is obtained at 
the 3rd level (Table IV) using the db3 wavelet function. This 
implies that further decomposition will introduce variance of 
the wavelet base function to the approximation part, which is 
not the information from the original image. Thus, the 3rd 
level wavelet approximation is used to find the edge searching 
region in this study.   

By searching for local minima in the direction perpendicular 
to the edge, the edge search region can be automatically 
(without visual bias) generated.   This reduces the noise 
impact on the original image. At the same time, the 
approximation sub-image yields an average intensity along the 
separating line between two adjacent edges. A suitable 
threshold value is required to sufficiently separate two 
adjacent edges and also to maintain the edge boundary 
deviation in edge roughness characterization. Statistics from 
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the sub-image with high-frequency component describe 
intensity deviation on the surface. To illustrate, we chose 
different threshold values  

 

 
Fig. 5. Pair edge image and its boundaries decided by wavelet 
decomposition at threshold value of intensity mean +δ 
(0.6290). 
 
based on the mean of the approximation sub-image and the 
standard deviation of the detail sub-image. Edge boundaries 
and characterization results at different threshold values are 
summarized in Figure 4 and Table V. 

Results in Table V show a similar trend as in Table II. The 
maximum edge roughness is obtained at 0.6290 (now 
quantified as one standard deviation), where edges are well-
separated and the edge width has not significantly decreased.  
As opposed to other techniques, with wavelet decomposition, 
the choice of the threshold is set by uniformly-defined 
characteristics of the image itself, i.e., the standard deviation 
of the detail image and the mean of the approximation sub-
image, where the former characterizes the density variance of 
the image and the latter represents the backbone of the edge 
studied.  

Pair edge boundary and characterization based on denoised 
wavelet decomposition is shown in Figure 5 and Table III. 
The threshold value is different from the one obtained from 
the original image, but the results are similar, since only the 
maximum intensity lines are considered. Again, the weak 
correlation between two paired edges is expected for a 
successful fabrication process. 

V. CONCLUSION 
Edge detection and characterization based on wavelet 

decomposition provide systematic evaluation of the 
superimposed edge search region and of the threshold value, 
which are both intrinsic properties of the image itself. The 
defined parameter sigma reveals the edge roughness at the 
corresponding threshold value. Based on the threshold 
calculation described in this paper, sigma yields a value close 
to the maximum edge roughness and therefore eliminates the 
need for visual evaluation. We demonstrated that wavelets 
provide an analytical framework to define the edge searching 
region, and minimize the need for subjective decisions in 
characterizing the line edge roughness. Our results indicate 
that this method can be a powerful tool for nanometer-scale 
edge detection and characterization for fabrication of 
advanced microelectronic devices and other nanometer-scale 
structures. 

APPENDIX 
A 1-D signal f(t) can be decomposed using the wavelet 

transformation and a family of real orthonormal bases 
)(, tkjψ , which are generated from a kernel function )(tψ : 

)2(2)( 2/
, ktt jj
kj −= −− ψψ                           (2) 

where j and k are integers, representing the dilations and 
translations. The wavelet coefficients of the signal f(t) can be 
calculated by the inner product, 

∫== dtttfttfa kjkjkj )()()(),( ,,, ψψ               (3) 

Another basis function, the scaling function ( )(tφ ), is 
needed in addition to the mother wavelet  )(tψ  to establish 
the multiresolution characteristics of the wavelet 
decomposition. )(tφ  can be expressed in terms of a weighted 
sum of shifted )2( tφ  as: 

∑ −=
n

ntnlt )2()(2)( φφ                            (4) 

where are the coefficients of a low-pass filter in the fast 
Discrete Wavelet Transform (DWT) calculation [5]. The 
mother wavelet 

snl )'(

)(tψ and the scaling function )(tφ  are related 
through the expression, 

∑ −=
n

ntnht )2()(2)( φψ                             (5) 

where  are coefficients now corresponding to a high-
pass filter. Two filters are related through the expression,  

snh )'(

)1()1()( nlnh n −−=                                    (6) 

While the mother wavelet )(tψ  represents the detail (high-
frequency) elements of the signal, the scaling function )(tφ  
captures the approximation (low-frequency) component of the 
signal.  In the actual calculation,  and  are more 
commonly used to perform the transform as 

)(nl )(nh

Jjknhcd

knlcc

n
kjkj

n
kjkj

,...2,1for          )2(

)2(

,1,

,1,

=−=

−=

∑

∑

−

−

      (7) 

Here, the coefficients  represent the original signal. The 
coefficients  correspond to the smoothed approximation 

(low-frequency) part of the decomposed signal at jth level, 
and are usually called the approximation coefficients.  The 
coefficients  correspond to the detail (high-frequency) 

part of the decomposed signal at jth level, and are usually 
referred to as the wavelet (detail) coefficients.  

nc ,0

kjc ,

kjd ,

This decomposition halves the spatial resolution since only 
half the number of samples now characterizes the entire 
signal. However, this operation doubles the frequency 
resolution, since the frequency band of the signal now spans 
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only half the previous frequency band, effectively reducing 
the uncertainty in the frequency by half. The above procedure 
can be repeated for further decomposition levels. At each 
level, the filtering and sub-sampling will result in half the 
number of samples (and hence half the spatial resolution) and 
half the frequency band spanned (and, hence, doubling the 
frequency resolution).  

),( yxf

)(xl

)(xh

),( yxfL

),( yxfH

)(yl

)(yl

)(yh

)(yh

),( yxf
LL

),( yxf
LH

),( yxf
HL

),( yxf
HHIn moving from 1D to 2D wavelet transform, the rows and 

columns of the data matrix (x and y coordinates) that represent 
the image are treated as independent. Therefore, the 2D filters 
become the tensor products of their 1D counterparts [16]: 

)(xl

)(xh

)()(),( yxyxLL φφφ =     )()(),( yxyxLH ψφφ =

              (8) )()(),( yxyxHL φψφ = )()(),( yxyxHH ψψφ =

Applying the filters to the image data (  array) results in NM ×

∑
−

=
+=

1

0
),mod)2((][1),(

lN

il
L yNixfil

N
yxf  

∑
−

=
+=

1

0
),mod)2((][1),(

hN

ih
H yMixfih

N
yxf          (9) 

for  and 1)2/(,...,2,1,0 −= Mx )1(...,,2,1,0 −= Ny . Here, 
 and  represent the support length of the low- and 

high-pass filters, respectively.  And furthermore, 
lN hN

∑
−

=
+=

1

0
)mod)2(,(][1),(

lN

i
L

l
LL Niyxfil

N
yxf  

∑
−

=
+=

1

0
)mod)2(,(][1),(

hN

i
L

h
LH Niyxfih

N
yxf  

∑
−

=
+=

1

0
)mod)2(,(][1),(

lN

i
H

l
HL Niyxfil

N
yxf       (10) 

∑
−

=
+=

1

0
)mod)2(,(][1),(

hN

i
H

h
HH Niyxfih

N
yxf  

for  and 1)2/(,...,2,1,0 −= KNx 1)2/(...,,2,1,0 −= Ny . 
A schematic for a one-level decomposition of a 2D image is 

shown in Figure 6(a). A high-pass and a low-pass filter are 
applied to the image in the x-direction (across the row of the 
matrix), and the results are down-sampled by deleting every 
other column. This results in two images of approximately 
half size of the original, one containing high frequency 
components of the rows, , and the other containing low 
frequency components, . These two images are then each 
filtered down the columns using high-pass and low-pass filters 
and down-sampling the results along the rows (deleting every 
other row). The resulting four images are approximately one-
fourth the size of the original image. 

Hf

Lf

 

(a) 

 

(b) 

Fig. 6. Schematic of one-level, 2D wavelet decomposition (a) 
and the multiresolution strategy for image decomposition (b). 

 
The sub-images , ,  and  represent the 
smoothed approximation, the horizontal detail, the vertical 
detail and the diagonal detail sub-images respectively (Figure 
6(b)). The process can be iterated on the smoothed 
approximation sub-image to obtain the decomposition in the 
next level. 
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